Example: A Simple Ideal Diode Circuit

Consider this simple circuit that includes an ideal diode:

Q: What are i_{0}^{i} and v_{0}^{i} ?
A: Follow the five easy analysis steps!

Step 1: Let's ASSUME the ideal diode is reverse biased (we're just guessing!).

Step 2: We therefore ENFORCE $i_{0}^{i}=0$ by replacing the ideal diode with an open circuit.

Step 3: Now we ANALYZE the circuit; finding the value of v_{D}^{i}.

(KVL)
(KL)
(Ohm's)
(enforced)
$\therefore i_{R}=$
$\therefore \quad V_{R}=$
$\therefore \quad v_{0}^{i}=$

Step 4: Now let's CHECK our result. \Rightarrow Is $v_{D}^{i}<0$??

$$
v_{D}^{i}=\quad X
$$

We must change our assumption, and then start over (Doh!).

1) Now ASSUME the ideal diode is forward biased (what's left?).
2) We therefore ENFORCE $v_{D}^{i}=0$ by replacing the ideal diode with an short circuit.
3) Now we ANALYZE the circuit; finding the value of i_{0}^{i}.

(KVL)
\therefore
(KL)
(Ohm's)
(enforced)
$\therefore i_{R}=$
$\therefore i_{0}^{i}=$
4) Now, let's CHECK our result. \Rightarrow Is $i_{0}^{i}>0$??
$i_{0}^{i}=$

Our assumption is correct!

Therefore, in this circuit, we now know that:

$$
v_{D}^{i}=0 \text { and } i_{D}^{i}=
$$

